
Міністерство освіти і науки, молоді та спорту України
Криворізький технічний університет
Факультет інформаційних технологій

Кафедра комп’ютерних систем та мереж

План роботи гуртка «Байт»

керівник: к. пед.н., доц. кафедри КСМ О. Маркова

Кривий Ріг
2025

Зміст

План роботи студентського гуртка "Байт" 5

План засідання №1 6

Тема: «Kick-off meeting та вектори розвитку в IT» 6

План засідання №2 8

Тема: Алгоритми та структури даних: "Спортивне програмування" 8

План засідання №3 9

Тема: Магія Clean Code: Як писати код, який не хочеться спалити 9

План засідання №4 12

Тема: Git & GitHub: Командна розробка без конфліктів 12

План засідання №5 13

Тема: «Штучний інтелект та Prompt Engineering» 13

План засідання №6 14

Тема: Кібербезпека: Основи цифрової гігієни та тестування на проникнення

План засідання №7 15

Тема: UI/UX Дизайн для розробників 15

План засідання №8 16

Тема: Backend vs Frontend: Битва технологій 16

План засідання №9 18

Тема: Soft Skills та підготовка до Interview 18

План засідання №10 19

Тема: Demo Day: Презентація проєктів 19

План роботи студентського гуртка "Байт"
Мета: Розширення знань у сфері IT, розвиток практичних навичок розробки

та командної роботи.
№

засідання Тема засідання Формат та основні питання

1 Kick-off meeting: Вектори
розвитку в IT

Знайомство, визначення інтересів
учасників. Огляд трендів 2025-2026 років.
Поділ на команди для майбутніх міні-
проєктів.

2
Алгоритми та структури
даних: "Спортивне
програмування"

Розбір класичних алгоритмів сортування
та пошуку. Проведення міні-змагання на
швидкість розв’язання задач (на
платформі LeetCode або Codeforces).

3
Магія Clean Code: Як
писати код, який не
хочеться спалити

Принципи SOLID, DRY, KISS. Практикум
з рефакторингу "брудного" коду. Огляд
інструментів статичного аналізу.

4 Git & GitHub: Командна
розробка без конфліктів

Робота з гілками (branching strategies), Pull
Requests, Code Review. Вирішення Merge
Conflicts на практиці.

5 Штучний інтелект та
Prompt Engineering

Як ефективно використовувати LLM
(ChatGPT, Claude, Gemini) для розробки.
Створення власного міні-бота через API.

6

Кібербезпека: Основи
цифрової гігієни та
тестування на
проникнення

Поширені вразливості (OWASP Top 10).
Етичний хакінг: як захистити свій веб-
ресурс від атак.

7 UI/UX Дизайн для
розробників

Основи роботи у Figma. Чому інтерфейс
має бути інтуїтивним. Створення
прототипу мобільного застосунку за 60
хвилин.

8 Backend vs Frontend:
Битва технологій

Огляд сучасних стеків (React/Next.js vs
Python/Node.js/Go). Побудова простої
архітектури клієнт-серверної взаємодії.

9 Soft Skills та підготовка
до Interview

Як скласти резюме, яке помітить
рекрутер. Симуляція технічної та
поведінкової співбесіди (Mock Interview).

10 Demo Day: Презентація
проєктів

Фінальна зустріч, де команди презентують
свої напрацювання. Підбиття підсумків,
нагородження активних учасників та піца-
паті.

План засідання №1

Тема: «Kick-off meeting та вектори розвитку в IT»

Мета: Знайомство учасників, визначення очікувань, огляд актуальних
технологій та формування команд.

Час проведення: 90 хвилин.

1. Блок «Знайомство» (20 хв)
- Презентація гуртка: Коротка історія назви «Байт», місія гуртка (спільне

навчання, pet-проєкти, підготовка до олімпіад/хакатонів).
- Вправа «Elevator Pitch»: Кожен студент за 30 секунд має розповісти:

1. Хто він/вона.
2. Яку мову програмування любить (або хоче вивчити).
3. Який крутий продукт мріє створити.

- Створення ком’юніті: Додавання всіх у закритий чат (Telegram/Discord) та
спільний GitHub-орг.
2. Блок «Тренди IT 2025-2026» (25 хв)
Інтерактивна лекція-дискусія про те, куди рухається ринок. Основні тези:

- AI-Driven Development: Як ШІ змінює роботу програміста (від написання
коду до архітектури).

- Cybersecurity & Privacy: Чому безпека стає частиною розробки
(DevSecOps).

- Edge Computing та IoT: Чому обробка даних «на місцях» витісняє чисті
хмарні рішення.

- Green IT: Енергоефективність коду як новий стандарт якості.
3. Блок «Проєктування траєкторії» (25 хв)

- Анкетування (Mentimeter або Google Forms): Студенти в реальному часі
голосують за технології, які їм цікаві найбільше (наприклад: Python, Rust,
React, AI, CyberSec).

- Презентація «Мапи засідань»: Демонстрація плану з 10 зустрічей, який ми
склали раніше, з можливістю внести корективи на основі анкетування.

- Вибір командних проєктів: Оголошення ідеї, що до кінця курсу кожна
команда (3-4 особи) має презентувати свій міні-проєкт (Demo Day).
4. Організаційний блок (10 хв)

- Графік: Узгодження дня та часу (щоб не накладалося на пари).
- Ролі: Хто хоче бути контент-мейкером гуртка (вести соцмережі), хто –

техлідом (допомагати іншим з кодом).
5. Q&A та Рефлексія (10 хв)

- Відповіді на запитання.
- «One-word checkout»: Учасники одним словом описують свої враження від

першої зустрічі.
Методичні матеріали:
1. Презентація (5-7 слайдів): З візуалізацією трендів та структурою

гуртка.
2. QR-коди: На вступ у чат гуртка та на анкету інтересів.

3. Стікери/Мерч (опціонально): Невеликі наклейки з логотипом
«Байт» для ноутбуків — це дуже зближує.

Результат засідання:
У кожного учасника є чітке розуміння, чим займається гурток, він доданий

до всіх ресурсів та знає, хто його потенційні партнери по команді.
Зміст анкети, реалізованої через Google Forms:

Анкета учасника гуртка "Байт"

І. Загальна інформація

1. Прізвище та ім’я
2. Курс та спеціальність
3. Твій рівень в програмуванні:
- Початківець (знаю синтаксис, але важко писати код).
- Середній (робив власні невеликі проєкти/лабораторні самостійно).
- Просунутий (маю досвід роботи або глибокі знання в конкретному

стеку).

ІІ. Технологічні вподобання

4. Які мови програмування тебе цікавлять найбільше? (Оберіть до 3-
х)

- Python / JavaScript (TypeScript) / C++ / Java / Rust / Go / Swift / Інше.
5. Який напрямок IT тобі найближчий?
- Web Development (Frontend/Backend).
- Mobile Development (iOS/Android).
- Artificial Intelligence & Data Science.
- Cybersecurity (Кібербезпека).
- Game Development.
- DevOps & Cloud Technologies.

6. Яку операційну систему ти використовуєш як основну для
навчання?

- Windows / macOS / Linux.

ІІІ. Формат роботи та очікування

7. Чого ти очікуєш від гуртка найбільше? (Пріоритезуй: 1 —
найважливіше)

- Отримання практичних навичок (воркшопи).
- Робота над командним проєктом для портфоліо.
- Підготовка до технічних співбесід.
- Участь у хакатонах та олімпіадах.
- Просто спілкування з однодумцями (нетворкінг).

8. Чи готовий/готова ти приділяти гуртку 2-3 години на тиждень
поза засіданнями для роботи над проєктом?

- Так / Можливо / Ні, тільки під час зустрічей.

9. Який формат засідань тобі подобається більше?
- Live-coding (дивимось і повторюємо).
- Міні-лекція + самостійна практика.
- Групові обговорення та брейншторми.

IV. Творчий блок

10. Чи є у тебе ідея проєкту, яку б ти хотів/хотіла реалізувати в межах
гуртка? (Якщо так — коротко опиши).

11. Яку тему ти б міг/могла сам(а) розказати іншим учасникам (якщо
є така експертиза)?

План засідання №2

Тема: Алгоритми та структури даних: "Спортивне програмування"

Мета: Ознайомити з платформою LeetCode/Codeforces, навчити оцінювати
складність коду та розв’язати перші змагальні задачі.

Тривалість: 90 хвилин.

1. Теоретичний блок: «Код, що літає» (20 хв)
- Складність алгоритмів (O-нотація): На пальцях пояснюємо різницю

між $O(1)$, $O(n)$, $O(n^2)$ та $O(\log n)$. Чому ваш код може «впасти»
на великих даних (Time Limit Exceeded).

- Структури даних, що рятують життя: Короткий огляд: Масиви vs Зв’язні
списки, Стеки/Черги та Хеш-таблиці (Dictionary в Python / Map в JS).

- Чек-лист спортивного програміста: Як читати умову задачі, щоб не
пропустити крайні випадки (Edge cases).
2. Воркшоп: «Розбір польотів» (25 хв)
Спільне розв’язання класичної задачі (наприклад, "Two Sum" або "Valid

Parentheses"):
- Крок 1: "Брутальна сила" (Brute force) — пишемо найочевидніше рішення.
- Крок 2: Аналіз — чому це повільно?
- Крок 3: Оптимізація — використовуємо хеш-таблицю або два вказівники

(Two Pointers), щоб пришвидшити код у рази.
3. Практика: Міні-турнір «Байт-Контест» (35 хв)
Студенти реєструються на LeetCode або Codeforces.

- Завдання: Дається набір із 3-х задач (Easy, Medium, Medium+).
- Формат: Можна працювати поодинці або в парах.
- Азарт: Виводимо на екран таблицю лідерів (якщо використовуєте

внутрішній контест) або просто слідкуємо, хто першим здасть усі задачі.
4. Ретроспектива та лайфхаки (10 хв)

- Code Review: Розбір найкращого (найкоротшого або найшвидшого)
розв’язку однієї з задач турніру.

- Ресурсна база: Поради, де тренуватися щодня (Advent of Code, Codewars).

https://leetcode.com/
https://codeforces.com/

- Анонс: Як алгоритми допоможуть нам у наступних темах (наприклад, у
криптографії).

Обладнання:
1. Ноутбук із встановленим середовищем розробки (VS Code, PyCharm

тощо) або доступ до онлайн-компіляторів.
2. Обліковий запис на LeetCode (бажано створити до початку).

План засідання №3

Тема: Магія Clean Code: Як писати код, який не хочеться спалити

Мета: Навчити студентів бачити різницю між "працюючим" та "якісним"
кодом, опанувати базові принципи рефакторингу. Тривалість: 90 хвилин.

1. Інтерактив: Естетика коду (15 хв)
- Гра "Вгадай, що я роблю": На екрані показується шматок коду з

жахливими назвами змінних (наприклад, data1, temp_list, a, b12). Студенти
мають вгадати логіку функції.

- Висновок: Код читається набагато частіше, ніж пишеться. Код має бути
"прозорим".
2. Теорія: Золоті правила (25 хв)
Короткий розгляд ключових концепцій (без занурення в академічну нудьгу):

- Назви, що говорять: Замість d = 86400 пишемо SECONDS_IN_A_DAY.
- Правило бойскаута: Залишай код після себе трохи кращим, ніж він був до

тебе.
- Принципи KISS та DRY: * KISS (Keep It Simple, Stupid): Не ускладнюй

там, де можна зробити просто.
o DRY (Don’t Repeat Yourself): Бачиш дублювання — винось у функцію.

- Функції-егоїсти: Функція має робити лише одну річ (Single Responsibility).
Якщо в назві функції є слово "And" — її треба розділити.
3. Практикум: "Code Clinic" (35 хв)
Це основна частина. Студенти отримують посилання на репозиторій (або

файл) із "брудним" кодом.
- Завдання: Провести рефакторинг.
- Етапи:

1. Виправити іменування.
2. Розбити велику функцію (на 50+ рядків) на декілька маленьких.
3. Замінити складні конструкції if-else на більш зрозумілу логіку або

match/switch.
4. Видалити мертвий код та зайві коментарі (гарний код не потребує

коментарів, він сам себе пояснює).
4. Дискусія: Коли "Clean" стає "Too Clean"? (10 хв)

- Обговорення межі: коли прагнення до ідеального коду починає шкодити
швидкості розробки (Overengineering).

- Чи завжди потрібно слідувати всім правилам SOLID?
5. Підбиття підсумків та Demo (5 хв)

- Порівняння коду "До" та "Після" на екрані.
- Анонс: Наступного разу ми дізнаємося, як зберігати цей чистий код у Git.

Методичні матеріали:
1. Книга Роберта Мартіна "Чистий код" (must-read для кожного

учасника).
2. Сайт Refactoring.Guru (чудові візуалізації принципів та патернів).
3. Плагіни для IDE: SonarLint або Prettier (показати, як вони

автоматизують чистоту).
«Брудний» код (Code to Refactor)
Ця програма розраховує знижки для покупців в інтернет-магазині та

виводить фінальну ціну.
Python
def p(d, t):
 # d - це список товарів, t - тип клієнта
 res = 0
 for i in d:
 res = res + i[‘p’]

 if t == 1: # VIP клієнт
 s = res * 0.2
 res = res - s
 else:
 if res > 1000: # Оптова знижка
 res = res - 50

 print("Фінальна сума: " + str(res))

 # Записуємо в лог
 f = open("log.txt", "a")
 f.write("User " + str(t) + " bought stuff for " +

str(res) + "\n")
 f.close()

items = [{‘n’: ‘Phone’, ‘p’: 1200}, {‘n’: ‘Case’, ‘p’:
50}]

p(items, 1)

Що тут «брудного» (Аналіз для студентів):
1. Жахливі назви: p, d, t, res, s, i — нічого не зрозуміло без коментарів.
2. Magic Numbers: Що таке 0.2? Що таке 1? (Це мають бути константи

або Enum).
3. Порушення Single Responsibility: Функція і рахує, і виводить на

екран, і пише у файл.

4. Відсутність обробки помилок: Робота з файлом без with або try-
except.

5. Дублювання логіки: Змішування бізнес-логіки зі звітами.

Як має виглядати цей код після «Магії Clean Code»:
Покажіть цей варіант після того, як студенти запропонують свої

рішення.
Python
from enum import Enum

class CustomerType(Enum):
 REGULAR = 0
 VIP = 1

VIP_DISCOUNT = 0.2
BULK_DISCOUNT_THRESHOLD = 1000
BULK_DISCOUNT_AMOUNT = 50

def calculate_total_price(cart_items):
 return sum(item[‘price’] for item in cart_items)

def apply_discounts(total, customer_type):
 if customer_type == CustomerType.VIP:
 return total * (1 - VIP_DISCOUNT)

 if total > BULK_DISCOUNT_THRESHOLD:
 return total - BULK_DISCOUNT_AMOUNT

 return total

def log_transaction(customer_type, final_amount):
 try:
 with open("transactions.log", "a") as

log_file:
 log_file.write(f"Customer:

{customer_type.name}, Amount: {final_amount}\n")
 except IOError as e:
 print(f"Logging failed: {e}")

Головна логіка
cart = [
 {‘name’: ‘Phone’, ‘price’: 1200},
 {‘name’: ‘Case’, ‘price’: 50}
]

raw_total = calculate_total_price(cart)

final_price = apply_discounts(raw_total,
CustomerType.VIP)

print(f"Фінальна сума до сплати: {final_price} грн")
log_transaction(CustomerType.VIP, final_price)

Завдання для засідання:
1. Роздати "брудний" код (скинути в чат або GitHub Gist).
2. Дати 20 хвилин на виправлення назв та розділення функцій.
3. Обговорити: Чому варіант з Enum та константами кращий, ніж if t ==

1.

План засідання №4

Тема: Git & GitHub: Командна розробка без конфліктів

Мета: Опанувати основні команди Git, зрозуміти робочий процес
(Workflow) у команді та навчитися вирішувати конфлікти злиття.

Тривалість: 90 хвилин.

1. Теорія: Git – це машина часу для коду (15 хв)
- Навіщо це треба: Історія версій, можливість відкотитися назад та

паралельна розробка фіч.
- Три стани файлу: Working Directory, Staging Area, Local Repository.
- Централізація: Різниця між Git (інструмент) та GitHub (соціальна мережа

для коду).
2. Воркшоп: Базовий цикл (20 хв)
Студенти виконують у терміналі (або через GUI) базовий ланцюжок

команд:
1. git init – створюємо репозиторій.
2. git add . – готуємо файли (Stage).
3. git commit -m "feat: add login logic" – фіксуємо зміни.
- Важливо: Вчимо писати змістовні повідомлення (Conventional

Commits).
4. git remote add origin ... та git push – відправляємо в хмару.
3. Командна гра: "The Conflict Challenge" (40 хв)
Це ключова практична частина. Студенти діляться на пари (А і Б).

- Крок 1: Студент А створює репозиторій на GitHub і додає студента Б як
співавтора (Collaborator).

- Крок 2 (Branching): Кожен створює свою гілку: git checkout -b feature-alpha.
- Крок 3 (Conflict): Обидва студенти змінюють один і той самий рядок у

файлі README.md або в коді, роблять комміт та пуш.
- Крок 4 (Pull Request): Студент А мержить свій код. Студент Б намагається

мержити свій і отримує Merge Conflict.
- Крок 5 (Resolution): Разом вчимося відкривати редактор, обирати

потрібний варіант (Current vs Incoming change) та завершувати злиття.
4. Огляд GitHub Flow (10 хв)

- Що таке Pull Request (PR) і чому не можна пушити прямо в main.
- Як проводити Code Review: залишаємо коментарі до коду колеги, просимо

виправити помилки.
- Використання GitHub Issues для планування завдань.

5. Підсумки та ДЗ (5 хв)
- Домашнє завдання: Створити репозиторій для свого майбутнього

командного проєкту, додати туди учасників своєї команди та файл
.gitignore.

Поради для модератора:
- Візуалізація: Використовуємо команду git log --graph --oneline для

демонстрації того, як гілки розходяться і сходяться.
- Інструменти: Показуємо, як вбудований інструмент VS Code допомагає

візуально вирішувати конфлікти – це знімає страх перед ними.
- Курйози: Розказуємо історію про те, як хтось випадково видалив main або

завантажив у публічний репозиторій паролі (і нагадайте про .gitignore).

План засідання №5

Тема: «Штучний інтелект та Prompt Engineering»

Тривалість: 90 хвилин.
Обладнання: Ноутбуки, доступ до інтернету, облікові записи (ChatGPT,

Gemini або Claude).
1. Теорія: Як «думає» нейромережа (15 хв)

- Архітектура коротко: Що таке токени та чому модель «передбачає»
наступне слово, а не знає відповідь.

- Обмеження: Проблема галюцинацій та актуальність знань (cutoff date).
- Чому контекст важливий: Поняття «context window».

2. Воркшоп: Мистецтво промптингу (30 хв)
Розгляд ключових технік створення запитів. Кожен студент має спробувати

ці підходи в реальному часі:
- Формула RTF (Role, Task, Format):

o Role: «Дій як Senior Python Developer...»
o Task: «Напиши скрипт для парсингу сайту...»
o Format: «Виведи результат у вигляді таблиці Markdown...»

- Техніка Few-Shot Prompting: Надання моделі кількох прикладів «вхідні
дані -> вихідні дані» перед основним питанням.

- Chain-of-Thought (Ланцюжок думок): Використання фрази «Давай думати
крок за кроком», що змушує ШІ вибудовувати логічну послідовність
(особливо важливо для коду та математики).
3. Практичне завдання: «Pair Programming з ШІ» (35 хв)
Студенти діляться на пари. Завдання: написати невеликий застосунок

(наприклад, «Калькулятор валют» або «Телеграм-бот для розкладу») за
допомогою ШІ.
- Етап 1: Генерація структури проєкту.

- Етап 2: Написання окремих функцій.
- Етап 3: Виправлення помилок (студенти навмисно вставляють помилку в

код і просять ШІ її знайти та пояснити).
4. Дискусія та етика (10 хв)

- Де межа між «допомогою» та «плагіатом»?
- Як перевіряти код, згенерований ШІ, на безпеку та вразливості.

Корисні ресурси для засідання:
1. Learn Prompting (безоплатний курс).
2. GitHub Copilot / Cursor – огляд інструментів, що інтегруються

безпосередньо в редактор коду.
3. Prompt Engineering Guide (dair-ai).
Домашнє завдання:
Створити «Perfect Prompt» для вирішення конкретної навчальної задачі

(наприклад, пояснення складної теми з дискретної математики п’ятирічній
дитині) та поділитися результатом у чаті гуртка.

Це засідання присвячене безпеці. Робимо акцент із «хакерства як злочину»
на «етичний хакінг» та розуміння того, як захистити власні розробки.

План засідання №6

Тема: Кібербезпека: Основи цифрової гігієни та тестування на проникнення

Мета: Ознайомити з основними векторами атак на вебдодатки, принципами
безпечної розробки та методами захисту персональних даних.

Тривалість: 90 хвилин.

1. Теорія: Світ очима хакера (15 хв)
- Хто такий Ethical Hacker: Чим відрізняються "White Hat" від "Black Hat".
- OWASP Top 10: Короткий огляд десяти найкритичніших ризиків безпеки

вебдодатків (SQL-ін’єкції, XSS, зламаний контроль доступу тощо).
- Соціальна інженерія: Чому найслабша ланка в безпеці – це людина, а не

код.
2. Демонстрація: «Анатомія атаки» (25 хв)

- SQL Injection: Показ того, як через звичайне поле логіна можна отримати
доступ до всієї бази даних (на прикладі безпечного локального стенду або
тренажера).

- XSS (Cross-Site Scripting): Як через коментар на сайті можна вкрасти
Сookies користувача.

- Брутфорс: Чому пароль 123456 або password зламується за мілісекунди.
3. Практикум: «Safe Code & Pentest» (40 хв)
Студенти працюють із тренувальними платформами (наприклад,

TryHackMe, Hack The Box або локальна DVWA – Damn Vulnerable Web
Application).
- Завдання 1: Знайти вразливість у наданому шматочку коду (наприклад, де

дані від користувача потрапляють прямо в SQL-запит).

- Завдання 2: Виправити цей код (використання Prepared Statements або
валідації).

- Завдання 3: Налаштування двофакторної автентифікації (2FA) для свого
GitHub-акаунта, якщо це ще не зроблено.
4. Цифрова гігієна для розробника (10 хв)

- Менеджери паролів: Чому не можна використовувати один пароль всюди.
- Безпека в Git: Як не «запушити» випадково API-ключі чи паролі в

публічний репозиторій (використання .env та інструментів на кшталт git-
secrets).

- VPN та публічний Wi-Fi: Ризики роботи в кафе.

Ресурси та інструменти:
1. OWASP Juice Shop: Найсучасніший і найскладніший проєкт для

тренувань із безпеки (Open Source).
2. Google Gruyere: Старий, але простий тренажер від Google для

вивчення веб-вразливостей.
3. Have I Been Pwned: Сервіс для перевірки, чи були ваші дані злиті в

мережу.
Порада для модератора:
Будьте обережні: наголошуємо, що будь-яке тестування чужих систем без

дозволу є незаконним.

План засідання №7

Тема: UI/UX Дизайн для розробників

Мета: Навчитися проектувати зручні інтерфейси, зрозуміти різницю між
UX та UI, та опанувати Figma на базовому рівні.

Тривалість: 90 хвилин.

1. Теорія: UX — це не "красиві кнопки" (15 хв)
- UX (User Experience): Логіка роботи, шлях користувача від точки А до

точки Б. Чому "зручно" важливіше, ніж "красиво".
- UI (User Interface): Візуальний стиль (кольори, шрифти, відступи).
- Закони дизайну для технарів:

o Закон Фіттса: Чим більша ціль і чим ближче вона, тим швидше її
досягти (чому кнопка "Купити" велика).

o Закон Хіка: Час на прийняття рішення зростає з кількістю варіантів
(чому меню не повинно мати 50 пунктів).

o Принцип контрасту: Головна дія має виділятися.
2. Огляд інструменту: Figma за 15 хвилин (15 хв)

- Робоча область: Frames (фрейми), Layers (шари).
- Auto Layout: Секретна зброя для створення адаптивних елементів (аналог

Flexbox у вебі).

- Компоненти: Як створити одну кнопку і перевикористовувати її всюди
(аналог класів/функцій у коді).
3. Практикум: "Спринт-дизайн мобільного застосунку" (45 хв)
Студенти працюють у Figma (можна в парах).

- Завдання: Створити 3 екрани для простого застосунку (наприклад, "Трекер
звичок" або "Замовлення кави").

- Етапи:
1. Wireframing (низька деталізація): Малюємо "скелет" застосунку

сірими прямокутниками (фокус на логіці).
2. Visual Design: Додаємо кольори, типографіку та іконки.
3. Prototyping: З’єднуємо екрани стрілочками, щоб зробити

клікабельний макет.
4. Demo та Feedback: "Критика дизайнера" (15 хв)

- Випадкові пари обмінюються посиланнями на свої Figma-проєкти.
- Завдання: Спробувати "пройти" шлях користувача в прототипі партнера і

знайти одне місце, де можна заплутатися.
- Обговорення: Чому розробнику важливо вміти читати Figma-макети

(Inspect mode, копіювання CSS-параметрів).

Що знадобиться:
1. Попередньо створений акаунт у Figma (працює в браузері).
2. Встановлені шрифти або використання стандартних (Inter, Roboto).
3. Набір іконок (наприклад, плагін Iconify у Figma).
Порада для модератора:
Акцентуємо увагу на тому, що дизайн – це теж ітеративний процес. Не

обов’язково бути художником, щоб зробити зручний інтерфейс. Використовуємо
готові UI-кити (набори елементів), щоб студенти не витрачали час на малювання
кожної лінії з нуля.

План засідання №8

Тема: Backend vs Frontend: Битва технологій

Мета: Розібрати ролі фронтенд- та бекенд-розробників, зрозуміти
архітектуру клієнт-серверної взаємодії та спробувати «подружити» їх через API.
Тривалість: 90 хвилин.

1. Теорія: Дві сторони однієї медалі (20 хв)
- Frontend (Клієнт): Те, що бачить користувач. Стек: HTML, CSS, JS +

фреймворки (React, Vue, Angular).
- Backend (Сервер): Те, що працює «під капотом». Логіка, автентифікація,

робота з БД. Стек: Python (Django/FastAPI), Node.js, Go, PHP, Java.
- Місток — API (REST, GraphQL): Як вони передають дані. Аналогія з

рестораном: Клієнт (Frontend) замовляє страву через офіціанта (API), а
кухар (Backend) її готує.

Shutterstock
2. Архітектурний розбір: JSON та HTTP (15 хв)

- HTTP методи: GET (дай дані), POST (створи), PUT (онови), DELETE
(видали).

- Формат JSON: Чому він став стандартом обміну даними.
- Статуси відповідей: 200 (OK), 404 (Not Found), 500 (Internal Server Error).

3. Практикум: «З’єднуємо деталі» (45 хв)
Студенти працюють із готовим міні-проєктом (наприклад, "Список справ").

- Завдання 1 (Backend): Запустити простий сервер (наприклад, на FastAPI
або Express), який повертає список завдань у форматі JSON.

- Завдання 2 (Frontend): Використати команду fetch у JavaScript, щоб
отримати ці дані з сервера та відобразити їх у браузері.

- Завдання 3 (Interaction): Реалізувати додавання нового завдання через
форму, яке б зберігалося на сервері (POST запит).
4. Дискусія: Fullstack чи спеціалізація? (10 хв)

- Хто такий Fullstack розробник і чи реально знати все.
- Як обрати свій шлях на початку кар’єри.
- Поняття BaaS (Backend as a Service), наприклад, Firebase або Supabase —

коли не хочеться писати бекенд з нуля.

Що знадобиться учасникам:
1. Встановлений Postman або розширення Thunder Client у VS Code

для тестування API-запитів.
2. Базові знання JavaScript (ES6+).
3. Для бекенду можна підготувати короткий шаблон на Python або

Node.js, щоб студенти не витрачали час на налаштування середовища.
Порада для модератора:
Найцікавіший момент засідання – коли студент вперше бачить, як дані,

введені у форму на сторінці, реально з’являються в базі даних або логах сервера.
Зробіть на цьому акцент!

Це засідання – перехід від технічних навичок (Hard Skills) до кар’єрного
старту. Тут ми вчимося «продавати» свій код та свою особистість роботодавцю.

План засідання №9

Тема: Soft Skills та підготовка до Interview

Мета: Навчитися презентувати свій досвід, підготувати якісне резюме (CV)
та відпрацювати навички проходження співбесіди.

Тривалість: 90 хвилин.

1. Теорія: Чому "геніїв-одинаків" більше не наймають (15 хв)
- Soft Skills, що рятують кар’єру: Комунікація, вміння приймати критику

(Code Review), тайм-менеджмент та емпатія в команді.
- Як працює рекрутинг: Хто такі HR, рекрутери, техліди. Що таке ATS

(системи автоматичного сканування резюме) і як їх пройти.
2. Майстер-клас: Ідеальне CV та LinkedIn (20 хв)

- Структура резюме: Як описати проєкти, над якими працювали в гуртку
«Байт».

- GitHub як візитівка: Чому порожній профіль — це погано, і що має бути в
README.md вашого проєкту.

- LinkedIn: Поради щодо оформлення профілю, щоб рекрутери самі писали
вам.
3. Практикум: "Mock Interview" (Симуляція співбесіди) (40 хв)
Учасники діляться на пари: «Інтерв’юер» та «Кандидат». Потім міняються

ролями.
- Етап 1: Behavioral Interview (15 хв): Відповіді на запитання за методикою

STAR (Situation, Task, Action, Result).
o Приклад: "Розкажи про ситуацію, коли ти не встигав зробити

завдання вчасно".
- Етап 2: Technical Screen (15 хв): Бліц-опитування з базових знань (що таке

об’єкт, як працює інтернет, різниця між SQL та NoSQL).
- Етап 3: Фідбек (10 хв): Обговорення в парах: що сподобалося, а що

викликало труднощі.
4. Блок: "Запитай у профі" (10 хв)

- Огляд типових помилок джуніорів на першій співбесіді.
- Як відповідати на запитання: "Які ваші очікування щодо зарплати?".
- Чому відмова після співбесіди — це теж корисний досвід.

5. Підготовка до фіналу (5 хв)
- Останні настанови перед Demo Day (Засідання №10).
- Поради щодо публічного виступу: як презентувати свій проєкт за 5

хвилин.

Що підготувати заздалегідь:
1. Шаблон резюме (наприклад, посилання на Canva або Google Docs).
2. Список з 20 типових питань на співбесіду для роздруківки

учасникам.
3. Запрошення (якщо можливо) реального рекрутера або розробника з

досвідом для короткого спічу онлайн.
Порада для модератора:

Створюємо атмосферу безпеки. Багато студентів бояться співбесід. Ваша
мета – показати, що це звичайна розмова двох спеціалістів про те, як вони можуть
бути корисні один одному.

Це фінальна точка подорожі гуртка «Байт». Це не просто звіт, а свято, де
студенти перетворюються з учнів на творців, які презентують власні продукти.

План засідання №10

Тема: Demo Day: Презентація проєктів

Мета: Публічний захист командних проєктів, отримання зворотного зв’язку
та неформальне святкування завершення сезону.

Тривалість: 120 хвилин (залежить від кількості команд).

1. Відкриття та Welcome Drink (10 хв)
- Вітальне слово керівника гуртка.
- Представлення «журі» або гостей (викладачі, представники IT-компаній або

старшокурсники).
- Коротке нагадування про шлях, який пройшов гурток за ці 10 занять.

2. Pitch Session: Презентації (60 хв)
Кожна команда має 5-7 хвилин на виступ + 3 хвилини на запитання.

Структура презентації:
1. Проблема: Яку задачу вирішує ваш проєкт?
2. Демонстрація (Live Demo): Показ працюючого коду/інтерфейсу (не

просто скріншоти!).
3. Технологічний стек: Що використовували (Git, Clean Code, API, AI-

інструменти).
4. Команда: Хто за що відповідав.
3. Голосування та фідбек (15 хв)

- Поки журі радиться, учасники можуть проголосувати в номінації "People’s
Choice Award" (Приз глядацьких симпатій) через онлайн-форму.

- Гості дають короткий конструктивний фідбек: що сподобалося в технічних
рішеннях команд.
4. Нагородження (15 хв)

- Вручення сертифікатів про участь у роботі гуртка.
- Оголошення переможців у номінаціях:

o «Натистіший код» (найкращий рефакторинг).
o «Накращий UX/UI».
o «Найтехнологічніше рішення».

- Невеликі подарунки (мерч, книги з програмування або промокоди на
курси).
5. Pizza Party та Networking (20 хв)

- Неформальне спілкування.
- Колективне фото.
- Збір фідбеку про гурток: Що студентам сподобалося найбільше і які теми

вони хочуть розглянути в наступному семестрі.

Що підготувати заздалегідь:
1. Технічне забезпечення: Проєктор, клікер, стабільний інтернет.
2. Сертифікати та призи: Надруковані грамоти (можна додати QR-код

на спільний репозиторій гуртка).
3. Кейтеринг: Піца, напої — це створює атмосферу справжнього IT-

мітапу.
Порада для модератора:
Підтримуємо студентів, у яких під час демо «щось пішло не так»

(класичний ефект демо). Наголошуємо, що навіть у великих компаній презентації
інколи провалюються, і головне – як розробник вміє це пояснити.

